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A simple pressure-based feedback control strategy for wall-transpiration control of
incompressible unsteady two-dimensional channel flow was recently investigated by
Aamo, Krstic & Bewley (2003). Nonlinear two-dimensional channel flow simulations
which implemented this control strategy resulted in flow transients with instantaneous
drag far lower than that of the corresponding laminar flow. The present article
examines the physical mechanism by which this very low level of instantaneous drag
was attained. It then explores the possibility of achieving sustained drag reductions to
below the laminar level by initiating such low-drag transients on a periodic basis.
All attempts at sustaining the mean flow drag below the laminar level fail, perhaps
providing indirect evidence in favour of the conjecture that the laminar state might
provide a fundamental ‘performance limitation’ in such flows. Mathematical analysis
of two-dimensional and three-dimensional channel-flow systems establishes a direct
link between the average drag increase due to flow-field unsteadiness and a weighted
space/time average of the Reynolds stress. Phenomenological justification of the con-
jecture is provided by a Reynolds analogy between convective momentum transport
and convective heat transport. Proof of the conjecture remains an open problem.

1. An open question of fundamental significance
Motivated by a desire to quantify possible fundamental performance limitations and

to understand better certain proposed mechanisms for channel-flow drag reduction,
the following, as yet unproven, conjecture was formally proposed in Bewley (2001):

Conjecture: The lowest sustainable drag of an incompressible constant mass-flux channel
flow, when controlled via a distribution of zero-net mass-flux blowing/suction over the
no-slip channel walls, is exactly that of the laminar flow.

Note that, by the ‘sustainable drag’ (denoted 〈D〉∞), we mean the time average
(denoted 〈D〉T ) of the instantaneous drag (denoted D(t)) as the averaging time T

approaches infinity, i.e.

〈D〉∞ � lim
T →∞

〈D〉T � lim
T →∞

1

T

∫ T

0

D(t) dt � lim
T →∞

−µ

T

∫ T

0

∫
Γ

±
2

∂u

∂n
dx dt,

where n is an outward facing normal, Γ
±
2 denotes the set given by the union of

the upper and lower walls of the channel, µ is the viscocity, u is the streamwise
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Figure 1. History of drag. In the controlled flow, the simulation is initiated from fully
established unsteady two-dimensional flow at Re = 7500, and the stabilizing pressure-based
feedback control strategy (2.1) with k = 0.125 is turned on at t = 0. The drag of the laminar
flow and the fully established unsteady two-dimensional channel flow (Jimenez 1990) are shown
for comparison.

component of the velocity vector u, and DL denotes the drag of the corresponding
laminar channel flow with the same dimensions, viscosity and bulk velocity.

Recent two-dimensional simulations of controlled channel flows demonstrating
strong D(t) < DL transients (Cortelezzi et al. 1998; Aamo, Krstić & Bewley 2003)
have cast some doubt as to the validity of this conjecture. The purpose of this note
is to investigate the mechanism behind these transients and the possible use of this
mechanism to provide sustained drag reductions to sublaminar levels.

2. The transient low-drag mechanism
The following feedback control rule was proposed and tested in Aamo et al. (2003):

φ± = k (p± − p∓), (2.1)

where φ± = −u · n is the blowing/suction distribution which is applied to the walls

Γ
±
2 of the channel flow system as the control, p± is the pressure on the corresponding

wall, p∓ denotes the pressure on the opposite wall, and k is a constant. With such
a strategy, blowing at one wall of the channel is always countered with suction of
equal magnitude at the opposite wall. A feedback rule of this form was motivated
by Lyapunov analysis of the kinetic energy of the channel flow system integrated
over the entire channel, integrated by parts, and examined at extremely low Reynolds
number (see Aamo et al. 2003 for details).

Regardless of the motivation for considering the feedback rule (2.1), it is of interest
here to study the flow that results when (2.1) is applied to the two-dimensional channel
flow system at supercritical Reynolds numbers. It was observed in Aamo et al. (2003)
that feedback of this type, when applied to the fully established unsteady flow in a
two-dimensional channel at Re = 7500, resulted in a flow transient with drag far below
the laminar level. A similar transient was also observed in earlier work by Cortelezzi
et al. (1998), where a low-drag transient to 50% below the laminar level was reported
in a two-dimensional flow.

As reported in figures 1–4, a transient which actually achieves negative total
drag for a short period of time is achieved by applying (2.1) to a fully-established,
unsteady, constant mass-flux two-dimensional channel flow at Re = 7500. Jiménez
(1990) describes the uncontrolled two-dimensional flow system. The simulations
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Figure 2. Scatterplot of φ versus (−µ∂u/∂n) at t = 5.
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Figure 3. Win–win mechanism at t = 5: intensification of local regions of negative drag by
suction in low-pressure regions and moderation of positive drag by blowing in high-pressure
regions. Shown are contours of pressure in 1/6 of the computational domain (top) and selected
velocity profiles (bottom).
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Figure 4. Elimination of backflow after control is turned on, as measured by b1(t) and b2(t).

reported here used a box length of 60 times the channel half-width at a resolution of
1024 × 128 using the DNS code of Lumley & Blossey (1998).

The flow at t = 0− in figure 1, a fully established unsteady flow in a two-dimensional
channel, has extensive regions of backflow near the walls. This appears to be the key
to initiating a D(t) < DL transient. A scatter plot of the local control φ as a function
of the local value of drag (−µ∂u/∂n) at t = 5 (shortly after the control is turned on) is
shown in figure 2, demonstrating correlation of blowing with local regions of positive
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drag and suction with local regions of negative drag using the present strategy (76%
of the samples are in the first and third quadrants). By generally applying suction at
the walls in regions of negative drag, and applying blowing in regions of large positive
drag, the negative drag regions are intensified (locally, more negative drag) and the
high positive drag regions are moderated (locally, less positive drag), as illustrated in
figure 3. In terms of reducing the total instantaneous drag D(t) integrated over the
walls at time t = 5, both effects are beneficial, and thus the control application results,
for a brief period of time, in a ‘win–win’ situation, facilitating a transient reduction
in skin-friction drag to well below laminar levels. Unfortunately, the wall suction
quickly acts to remove the backflow from the flow domain entirely, after which the
instantaneous drag D(t) asymptotes back to the laminar level DL.

A metric which quantifies the backflow present at any instant in a particular flow
is given by bp = [(1/V )

∫
Ω− |u|p dx]1/p , where Ω− is the subset of the channel flow

domain Ω which is characterized by regions of flow with negative streamwise velocity,
i.e. Ω− = {Ω(x, y)|u(x, y) < 0}, and V is the volume of the entire channel domain
Ω . For the simulation depicted in figures 1–3, plots of the history of b1 and b2 are
shown in figure 4. Note that, by both measures, the backflow is quickly eliminated
after the control is initiated; flow visualizations such as figure 3 demonstrate that the
backflowing fluid in Ω− is simply removed from the channel by the control suction.

3. Cycling the controller off and on
As a ‘standard’ problem to test the capability of a given control strategy for

reducing time-averaged drag to below laminar levels, a series of controlled two-
dimensional channel-flow simulations at Re =7500 were initialized from small
(random) perturbations to a laminar flow profile. The control producing the D(t) < DL

transients was cycled off and on periodically, with the ‘running time average’ of the
drag, 〈D〉t = (1/t)

∫ t

0
D(t ′) dt ′, computed as the flow evolved to quantify progress

towards sustained drag increase or reduction as compared with the reference drag
of the laminar flow. By initializing the test as a small perturbation of the reference
(laminar) flow, the tendency of the control strategy to increase or decrease the drag as
compared with the reference value is readily determined. A large variety of different
periods, duty cycles and control amplitudes were explored; table 1 summarizes some
of the specific cases examined in detail.

Cases 1–5 reported in table 1 were executed at a cycle time of Tcycle = 3000 for
a variety of duty cycles with relatively strong stabilizing feedback applied during
the second segment of each cycle. Cases 6–8 were similar, but applied relatively
weak stabilizing feedback. Cases 9–13 returned to the relatively strong stabilizing
feedback, but investigated a shorter cycle time. Finally, cases 14–16 were executed with
destabilizing feedback applied during the first segment of each cycle, and stabilizing
feedback applied during the second segment of each cycle; this was done to accelerate
the formation of the backflow regions. Histories of the L2 energy, the instantaneous
and ‘running time-averaged’ drag D(t) and 〈D〉t , and the backflow measures b1 and
b2 are illustrated in figure 5 for four representative cases.

It was found in cases 1, 2, 9, 10 and 14, with T2/T1 relatively large, that the
stabilization provided by the control during the second segment of each cycle was
sufficient to stabilize the entire channel flow back to the parabolic profile; to illustrate,
cases 14 and 15 are plotted in figures 5(c) and 5(d). These cases imply that T2/T1 must
be sufficiently small in order to allow a quasi-periodic limit cycle to be sustained.
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Case Tcycle T1 T2 k1 k2 〈D〉∞/DL

1 3000 2600 400 0 0.125 1.00
2 3000 2700 300 0 0.125 1.00
3 3000 2800 200 0 0.125 1.09
4 3000 2900 100 0 0.125 1.20
5 3000 2950 50 0 0.125 1.42
6 3000 2000 1000 0 0.031 1.17
7 3000 2500 500 0 0.031 1.35
8 3000 2800 200 0 0.031 1.43
9 2000 1600 400 0 0.125 1.00

10 2000 1700 300 0 0.125 1.00
11 2000 1800 200 0 0.125 1.05
12 2000 1900 100 0 0.125 1.17
13 2000 1950 50 0 0.125 1.38
14 1000 325 675 −0.031 0.031 1.00
15 1000 350 650 −0.031 0.031 1.56
16 1000 500 500 −0.031 0.031 1.84

Table 1. Representative forcing schedules explored during the parametric study: Tcycle indicates
the period of the cycle used (in units of δ/Uc), T1 denotes the duration of the first segment of
the cycle, T2 denotes the duration of the second segment, k1 denotes the feedback coefficient
used during the first segment, and k2 denotes the feedback coefficient during the second
segment. The last column indicates the time asymptotic value of the running time-average
drag; note that some cases relaminarize, leading to the drag of the laminar flow, wheras other
cases lead to a limit-cycling behaviour with an average drag greater than that of the laminar
flow. All simulations were initialized from a slightly perturbed laminar flow. Note that δ is the
channel half-width and Uc is the centreline velocity of the corresponding laminar flow.

It was found in cases 5, 8, 13 and 16, with T2/T1 relatively small, that the
uncontrolled (or, in case 16, destabilized) evolution of the flow during the first segment
of each cycle was sufficient to drive the time-averaged drag to heightened levels.

A tradeoff is thus identified: we need T2/T1 to be sufficiently small so that there is
an adequate amount of backflow to exploit during each cycle (so the ensuing transient
will have a significant D(t) < DL minimum), but we also need T2/T1 to be sufficiently
large so that the mean drag is not pulled up too high above the laminar level during
the segment of each cycle in which the backflow is developing. Intermediate values
of T2/T1 were thus sought for a variety of cycle times Tcycle = T1 + T2 and forcing
amplitudes k1 and k2 over a parametric study of several simulations, some of which
are reported here. Over all these simulations, this tradeoff was evident, and not once
did the running average, 〈D〉t , dip below the laminar value, DL, when the simulations
were initiated from the perturbed laminar state. These results indicate that it appears
always to be necessary to pay a more expensive price (in terms of the time-averaged
drag) to obtain the backflow than the benefit (in terms of the time-averaged drag)
that can be obtained by applying suction to the backflow regions.

4. Analysis
For generality of this discussion, we will now analyse mathematically the three-

dimensional case depicted in figure 6. The two-dimensional case may be considered
as a special case of the analysis presented here.
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Figure 5. Representative time histories of parametric study, results of which are summarized
in table 1. (a) Case 3: Tcycle = 3000, no feedback for T1 = 2600, relatively strong stabilizing
feedback for T2 = 400. (b) Case 6: Tcycle = 3000, no feedback for T1 = 2000, relatively weak stabi-
lizing feedback for T2 = 1000. (c) Case 14: Tcycle = 1000, destabilizing feedback for T1 = 325,
stabilizing feedback for T2 = 675. (d) Case 15: Tcycle = 1000, destabilizing feedback for T1 = 350,
stabilizing feedback for T2 = 650.

4.1. Problem statement

Consider the incompressible Navier–Stokes equation†
∂u
∂t

+ u · ∇u + ∇p = ν�u + iPx,

(4.1)
∇ · u = 0,

† Without loss of generality, we take the density as unity, so ν = µ in the remainder of this
discussion.
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Figure 6. Flow domain Ω under consideration in § 4, and the notation used.

governing the flow in the rectangular domain Ω of size (0, Lx) × (−1, 1) × (0, Lz),
shown in figure 6. The mean pressure gradient Px(t) in the streamwise direction i is
adjusted in such a way as to maintain a constant bulk velocity

UB =
1

V

∫
Ω

u1(x, t) dx = constant ∀t, (4.2)

where V = 2LxLz. The initial conditions on the velocity field u(x, 0) in the domain Ω

are taken initially as the laminar flow profile

u(x, 0) = C
(
1 − x2

2

)
i, (4.3)

where C = (3/2)UB . The boundary conditions on the walls (Γ ±
2 ) are no slip in

the x1 and x3 directions and some (as yet undetermined) unsteady distribution of
blowing/suction in the wall-normal (x2) direction

u = −n φ(x, t) on Γ
±
2 , (4.4)

with periodic boundary conditions assumed in the x1- and x3-directions. As n is
defined as an outward facing normal, positive φ corresponds to blowing and negative
φ corresponds to suction. The control is constrained to apply zero-net mass flux at
each instant: ∫

Γ −
2

φ dx =

∫
Γ +

2

φ dx = 0 ∀t. (4.5)

The conjecture considered in the present paper is the assertion that, for any
distribution of controls φ satisfying (4.5), the minimum sustainable drag is exactly
that of the laminar flow.

4.2. Relationship of conjecture to the energy dissipation and the Reynolds stress

We are interested in time-averaged quantities defined such that

〈f 〉T =
1

T

∫ T

0

f dt;

in particular, we are interested in the T → ∞ limit of such quantities, which we denote
〈f 〉∞. The L2 norm of a function g(x) is denoted

‖g‖2 =

(∫
Ω

|g(x)|2 dx
)1/2

.
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Of particular interest is the instantaneous energy dissipation rate, given by

ν ‖∇u‖2
2 = ν

3∑
ι,κ=1

∥∥∥∥ ∂uι

∂xκ

∥∥∥∥
2

2

.

Note that it is easily shown (by integrating the x1-component of the Navier–Stokes
equation) that

〈D〉T � 〈Px〉T =
1

T

[∫ T

0

∫
Γ −

2

ν
∂u1

∂x2

dx dt −
∫ T

0

∫
Γ +

2

ν
∂u1

∂x2

dx dt

]
. (4.6)

That is, 〈D〉T � 〈Px〉T is simply the skin-friction drag of the flow integrated over both

walls Γ
±
2 and averaged over the time interval [0, T ].

A relationship between the average skin-friction drag 〈D〉∞ and the average energy

dissipation rate 〈ν ‖∇u‖2
2〉∞ is now determined by taking the scalar product of

the Navier–Stokes equation (4.1) with the velocity field u, integrating over space,
integrating by parts, and noting that u · ∂u/∂n= 0, which gives

d

dt

1

2
‖u‖2

2 +

∫
Ω

uiuj

∂ui

∂xj

dx +

∫
Ω

ui

∂p

∂xi

dx + ν ‖∇u‖2
2 = PxUBV,

with summation notation implied. Integrating the second and third terms on the
left-hand side by parts, applying continuity and the boundary conditions, gives

d

dt

1

2
‖u‖2

2 + ν ‖∇u‖2
2 −

∫
Γ

±
2

φ

(
φ2

2
+ p

)
dx = PxUBV.

Taking the time average in the limit that T → ∞, assuming a priori that ‖u‖2
2 remains

bounded (see, for example, Constantin & Doering 1994), gives

〈D〉∞ =
1

UBV

[
〈ν ‖∇u‖2

2 〉∞ −
〈∫

Γ
±
2

φ

(
φ2

2
+ p

)
dx

〉
∞

]
. (4.7)

A relationship between the average skin-friction drag 〈D〉∞ and the Reynolds stress
is now determined. Decompose u according to u(x, t) = iU (x2) + v(x, t), where we
will take U (x2) as the parabolic laminar flow profile U (x2) = C(1 − x2

2 ) and therefore

v(x, 0) = 0 and v = −n φ(x, t) on Γ
±
2 . Note that it follows immediately from (4.2) that∫

Ω

v1(x, t) dx = 0 ∀t (4.8)

and, by substitution of u(x, t) = iU (x2) and φ = 0 into (4.7), that

DLUBV = νLxLz

∫ 1

−1

U ′2 dx, (4.9)

where DL is the drag of the laminar flow U . Substituting u(x, t) = iU (x2) + v(x, t) into
(4.1), noting that the laminar flow U (x2) itself satisfies (4.1) for some mean pressure
gradient Px,L, it follows that

∂v

∂t
+ v · ∇v + U

∂v

∂x1

+ iv2U
′ + ∇p = ν�v + i(Px − Px,L),

∇ · v = 0.


 (4.10)
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Going through a similar development as that which led to (4.7) and applying (4.8)
leads to

0 = 〈ν ‖∇v‖2
2 〉∞ −

〈∫
Γ

±
2

φ

(
φ2

2
+ p

)
dx

〉
∞

+

〈
ν

∫
Ω

U ′ ∂v1

∂x2

dx
〉

∞

+

〈∫
Ω

v1v2U
′ dx

〉
∞

. (4.11)

Note the fact that, since u(x, t) = iU (x2) + v(x, t), it follows that

‖∇u‖2
2 = LxLz

∫ 1

−1

U ′2 dx2 + 2

∫
Ω

U ′ ∂v1

∂x2

dx + ‖∇v‖2
2 . (4.12)

Further, integration by parts, applying the boundry conditions on v, noting that U is
quadratic, and applying (4.8) shows that∫

Ω

U ′ ∂v1

∂x2

dx = −
∫

Ω

U ′′v1 dx = −U ′′
∫

Ω

v1 dx = 0. (4.13)

Finally, combining (4.7), (4.9), (4.11), (4.12) and (4.13) gives simply

〈D〉∞ = DL − 1

UBV

〈∫
Ω

v1v2U
′ dx

〉
∞

� DL +
1

UBV
〈H 〉∞. (4.14)

Note that the φ(φ2/2 + p) term representing the direct influence of the control φ on
the energy balance in the flow cancels from this expression. The only way the control
can affect the drag is indirectly, via the effect of the term involving the average value
of v1v2U

′.
The question of whether or not drag can be maintained below laminar levels

thus boils down to a question of whether or not the time average of the quantity
H = −

∫
Ω
v1 v2 U ′ dx can be made negative by the action of a control boundary

condition v = −n φ on Γ
±
2 , where φ satisfies (4.5). Note the relationship of the

quantity H to the Reynolds stress of a channel flow. In an uncontrolled flow (φ = 0)
when self-sustained unsteadiness (turbulence) is present (i.e. when v �= 0), the time
average of this term is positive, resulting in the substantial drag increase seen in
turbulent flows. The question considered in this paper is whether or not, by action
of control, the near-wall unsteadiness may be ‘fundamentally restructured’ in such a
way that 〈H 〉∞ is negative.

4.3. An equivalent eigenvalue problem

In the steady case, the question of whether or not the term H is positive in the
nonlinear Navier–Stokes problem (even when control is applied) is related to the
self-adjoint generalized eigenvalue problem

λ




1 0
1

1
0 0







w1

w2

w3

π


 =




0 −U ′(x2) 0 ∂/∂x1

−U ′(x2) 0 0 ∂/∂x2

0 0 0 ∂/∂x3

−∂/∂x1 −∂/∂x2 −∂/∂x3 0







w1

w2

w3

π


 (4.15)

with boundary conditions

w = −n φ(x, t) on Γ
±
2 , (4.16)

where φ satisfies (4.5). Note that w and π are periodic in the streamwise and
spanwise directions. By premultiplying (4.15) with

(
w1 w2 w3 π

)
, integrating over
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the domain Ω , integrating by parts, and applying continuty, we see that

−
∫

Ω

w1 w2 U ′ dx = 1
2
λ ‖w‖2

2 +

∫
Γ

±
2

π φ dx.

By the first line of (4.15) evaluated at the wall, the boundary condition (4.16), the fact
that U ′(x2) = −2Cx2, and periodicity of π, it follows that∫

Γ
±
2

π φ dx =

∫
Γ

±
2

π

(
1

2C

∂π

∂x1

)
dx =

1

4C

∫
Γ

±
2

∂π2

∂x1

dx = 0,

and thus, taking v =w in (4.14),

〈D(w)〉∞ = DL +
λ

2UBV
‖w‖2

2 .

Since drag is linear in the velocity field, the present conjecture (in the steady case)
is equivalent to the statement that the set of eigenvectors w corresponding to the
positive eigenvalues λ of (4.15) form a complete basis of all possible steady-flow
solutions of (4.1)–(4.4) for arbitrary φ satisfying (4.5). Note that equation (4.15) is
a construed, but perhaps useful, test equation and is not the equation obtained via
linearization of the governing equations; as motivated by the work of Constantin
& Doering (1994), further analysis of this equivalent eigenvalue problem provides a
promising avenue for mathematical proof of the present conjecture.

4.4. Phenomenological justification

Yet another way of interpreting the present conjecture is that, on average (that
is, averaged in space in steady problems and averaged in both space and time in
unsteady problems), convection triggered by unsteadiness or non-uniformity of the
boundary conditions can only accelerate momentum transfer in the direction of
viscous diffusion, and cannot be used to counter this effect.

Phenomenological justification of the conjecture is provided by an analogy between
convective momentum transport and convective heat transport, both of which
generally act to accelerate net transport in the direction of diffusion in the uncontrolled
setting (e.g. in uncontrolled turbulence). The conjecture holds that convective transport
due to flow-field unsteadiness or non-uniformity must continue to accelerate net
transport in the direction of diffusion even when control forcing is applied. In the
case of heat transport in flows for which viscous heating is negligible, the logical
argument for why wall-normal fluid motion must accelerate heat transport in the
direction of diffusion is particularly clear. Consider a channel flow with temperature
T advecting and diffusing according to the linear equation

∂T

∂t
+ u · ∇T = k�T

with boundary conditions T (x2 = −1) = −1 and T (x2 = 1) = 1 and initial conditions
T (t = 0) = x2. The fact that −1 � T � 1 everywhere in the channel for t > 0, even
when φ �= 0, follows via the minimum and maximum principles (failure of the
minimum principle in this case would lead quickly to a violation of the second
law of thermodynamics; the maximum principle follows by symmetry arguments).
Near the lower wall, flow-field unsteadiness thus inevitibly transports warmed fluid
(with T > −1) towards the cold wall (at T = −1) and cooled fluid (with T ≈ −1)
away from the cold wall, thereby accelerating the effect of diffusion. (Similarly, near
the upper wall, flow-field unsteadiness inevitibly transports cooled fluid (with T < 1)
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towards the hot wall (at T = 1) and hot fluid (with T ≈ 1) away from the hot wall.)
Mathematical proof that the laminar flow indeed provides a fundamental performance
limitation in terms of minimizing heat transport is given in Bewley & Ziane (2003).

As shown in the present paper, the same phenomenological justification cannot
quite be applied to the problem of momentum transport, as the velocity is governed
by a nonlinear equation for which a maximum principle does not apply, and small
pockets of ‘reverse flow’ can occasionally develop in a transient fashion near the walls.
The present conjecture simply states that the same result as described above for heat
transport must also apply on average for momentum transport.

5. Discussion
5.1. Positive aspects of the present results

In the present work, transient drag reduction to well below the laminar level in a
constant mass-flux channel-flow system with zero-net blowing/suction controls has
been obtained with a very simple feedback control strategy, (2.1), motivated by
global analysis of the nonlinear Navier–Stokes equation (Aamo et al. 2003). We have
interpreted the physical mechanism responsible for the sublaminar transients as a
‘win–win’ mechanism in which suction is applied to negative skin-friction regions, and
blowing is applied to high positive skin-friction regions, thus intensifying the former
and weakening the latter, as illustrated in the flow visualization given in figure 3. The
system under consideration has been fully resolved with appropriate grid refinement
studies (note the use of grid resolutions of 1024 × 128 and box lengths of 60 channel
half-widths). The mechanism responsible for the sublaminar drag has been identified
as a transient mechanism that probably cannot be exploited to sustain channel-flow
drag at sublaminar levels. Note that instantaneous total drag (integrated over the
channel walls) in a constant-mass-flow two-dimensional channel flow has in fact been
driven to negative levels in the present work; as far as we know, these are the strongest
D(t) < DL transients ever obtained in a blowing/suction-controlled constant mass flux
channel-flow system.

5.2. Negative aspects of the present results

It is sometimes just as important to report negative results as it is to report positive
results. Indirect evidence of a negative nature is provided in the present paper. Though
we now clearly understand a mechanism which provides strong D(t) < DL transients
(in fact, D(t) < 0 transients) in constant mass-flux two-dimensional channel flows, an
extensive parametric study of simulations which chain such transients together all
indicate the inability of this mechanism to sustain time-averaged drag below laminar
levels. The present results thus point consistently towards, but do not prove, the
conjecture concerning the possible fundamental performance limitation implied by
the laminar flow solution, even in light of recent explorations of flow control strategies
demonstrating strong D(t) < DL transients. As stated previously, mathematical proof
of this conjecture remains an open problem.

5.3. Related prior investigations

The present work grows out of a desire to understand and quantify fundamental
performance limitations present in wall-bounded flow systems subject to a broad class
of zero-net mass-flux boundary controls (e.g. blowing/suction) or zero-net near-wall
forcing on the interior of the flow (e.g. from the Lorentz force arising from wall-
mounted magnets and electrodes). We hope that the present numerical evidence
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will invigorate the investigation of this type of fundamental performance limitiation,
perhaps bringing new perspectives to the still unresolved question proposed in § 1 and
related fundamental limitations which may be formulated in a similar manner.

To the best of our knowledge, there are currently no definitive analyses of the
possible fundamental performance limitation discussed in the present paper, though
analyses related to that presented in § 4 for similar problems are presented in, e.g.
Doering & Constantin (1992), Constantin & Doering (1994, 1995), Goubet (1996),
Fursikov, Gunzburger & Hou (1998) and Keller (2003). On the other hand, there
have been a few prior works which imply that the fundamental limitiation proposed
in § 1 might be false. We now briefly review these investigations.

In Nosenchuck (1994), a new technique for ‘fundamentally restructuring near-
wall unsteadiness’ with a particular type of Lorentz forcing was introduced, and
a proposed mechanism for drag reduction was introduced via the creation of so-
called ‘two-dimensional fluid rollers’ near the wall. Two US patents (nos. 5320309
and 5437421) have been issued to Nosenchuck and Brown in the area of boundary-
layer control, both of which are based in part on the concept of ‘fundamentally
restructuring near-wall unsteadiness’ in this fashion using a variety of types of
actuation. With this proposed mechanism, when viewed in the appropriate frame of
reference (convecting with the vortices), Kelvin–Stuart cat’s-eye vortices are claimed
to ‘insulate the wall from the viscous forces otherwise imparted by the bulk flow’,
thereby reducing drag and providing a proposed mechanism to sustain the drag
at sublaminar levels. In Koumoutsakos (1999), this ‘two-dimensional fluid rollers’
explanation was provided as a possibly dominant mechanism in the flow resulting
from a ‘vorticity-flux’ control strategy when applied to three-dimensional turbulent
channel flow, albeit not providing drag reduction to below the laminar level.

Finally, making concrete the hypothesized existence of some unsteady mechanism to
maintain drag at sublaminar levels, such as that described in the previous paragraph,
Cortelezzi, Lee, Kim & Speyer (1998), hereinafter referred to as CLKS98, applied
a linear control theory to a nonlinear two-dimensional channel flow, and make the
claim that a ‘dramatic drag reduction was obtained, up to 50% with respect to the
laminar flow and 60% with respect to the turbulent flow.’ (Note that the use of
the phrase ‘turbulent flow’ in this quote apparently refers to something other than
three-dimensional channel-flow turbulence.) It has proved impossible for our group
to repeat the CLKS98 result. In the years since, the authors of CLKS98 have not
repeated this result either, though we are not aware of any formal retraction of this
remarkable CLKS98 claim. Recent results by the same group (see, e.g. Lee et al. 2001)
have retreated to more modest claims (10–15% drag reduction below the turbulent
flow).

The statement of CLKS98 cited above is significant because, if not interpreted
correctly, it might lead us to believe that global minimization of drag and global
minimization of turbulent kinetic energy (that is, relaminarization) are not equivalent
in the control of channel-flow systems, and thus that some unsteady mechanism of
‘insulating the wall from the viscous forces otherwise imparted by the bulk flow’ is
in fact possible. It is for this reason that a critical evaluation of the CLKS98 result
is necessary. It is important to determine whether or not we should attempt to drive
near-wall flows towards some peculiar unsteady motions rather than towards the
laminar state when trying to minimize flow-induced skin-friction drag.

The present numerical results, though not providing a proof of the present
conjecture, at least act to illustrate how the CLKS98 result might be consistent
with the intuition that the laminar flow solution represents a fundamental limit in
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the present channel-flow system. In order to be consistent with the present numerical
results and with the unproven conjecture stated in § 1, the CLKS98 result might
simply reflect an unsustainable transient.

5.4. The larger implications of a study in a two-dimensional channel

Establishing absolute performance limitations inherent in a certain broad class of
flow control problems is an issue of fundamental importance, as it provides us
with new insight which is valuable when framing the mathematical statement of
the control objective when formulating a model-based feedback control problem.
Understanding such a fundamental issue in the two-dimensional setting is an essential
prerequisite to understanding the same issue in the three-dimensional setting. In fact,
the ‘two-dimensional fluid rollers’ mechanism for ‘insulating the wall from the viscous
forces otherwise imparted by the bulk flow’, as discussed above, is a completely two-
dimensional mechanism which may be critically evaluated in the two-dimensional
setting.

The ‘win–win’ mechanism described in this paper relies on the exploitation of
backflow regions near the wall. Note that extensive backflow regions near walls are
not naturally occurring in uncontrolled three-dimensional turbulent near-wall flows,
and thus we might expect a two-dimensional channel flow to be ‘easier’ to drive
to sublaminar levels than a three-dimensional channel flow with this mechanism.
However, this observation is tangential to the subject at hand, which, in fact, is a
more fundamental question about a strict bound on the set of solutions that a specific
class of Navier–Stokes control problems admits.

It should also be pointed out that it is a trivial matter to initiate largely two-
dimensional structures in controlled three-dimensional near-wall flows (even turbulent
ones) by synchronizing control forcing on the wall in the spanwise direction. This
was, in fact, the (unexpected) result in the vorticity flux control implementation by
Koumoutsakos (1999). If a near-wall two-dimensional mechanism for sustained drag
reduction to sublaminar levels exists, implementing it in a three-dimensional flow via
coordinated control input at the wall should be straightforward.

Further mathematical analysis of the present conjecture, in both the two-
dimensional and three-dimensional and steady and unsteady settings, is thus motivated
to further our basic phenomenological understanding of the problem of control of
wall-bounded flows.

The authors gratefully acknowledge conversations with P. Constantin, J.
Freudenberg, M. Gunzberger, R. Temam, C. Trenchea and M. Ziane concerning
promising avenues for mathematical proof of the present conjecture.
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